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Abstract. The two-spin and four-spin correlation functions involving one and two pairs of 
nearest neighbours respectively are evaluated near the free surface of an Ising ferro- 
magnet and the departure from the bulk value is found. These correlation functions could 
be termed the energy density and the energy densityenergy density correlation functions. 
Near the critical temperature T, the energy density in the surface layer is found to behave 
as t2  In t with t = IT- T,l. This contrasts with the bulk energy density which has a t In t 
singularity. Correlations between a surface and a bulk spin are evaluated above and below 
T,. Correlations between surface spins when the coupling between the surface spins is 
different from those in the bulk are examined. 

1. Introduction 

A cylindrical Ising model is investigated using the transfer matrix V' parallel to the 
axis of the cylinder. In particular, certain correlations between spins a finite distance 
from the edge of the lattice will be calculated. 

The problem of a non-toroidal lattice has been investigated by McCoy and Wu 
(1967) who gave an exhaustive analysis of properties such as magnetisation and 
correlation in the boundary layer itself. This problem has also been examined by 
Abraham (1971) and Abraham and Martin-Lof (1973). Here correlations between 
spins near, but not necessarily both in, the surface layer will be investigated. This 
problem was investigated by Camp and Fisher (1972) who obtained a high tempera- 
ture expression for the spin-spin correlation when the spins are an arbitrary distance 
from a free surface. In a few cases the approach of a correlation function to its bulk 
value can be easily calculated at a variety of temperatures. It is these correlation 
functions that will be of interest here. 

In 0 2 a brief review of the model is given. In 0 3 the expectation of a pair of 
nearest neighbour spins is calculated at an arbitrary distance from the free surface and 
the approach to the bulk value found for T 5 T, and T = T,. Also in 0 3 the energy 
density-energy density correlation function is calculated at T = T,, and to leading 
order this behaves as 

1 1 --- 
I 2  ( 1 + 2 r ) ~  

where I is the separation and r is the distance of the nearer pair of spins from the free 
surface. The above has the form of a direct correlation minus an image correlation. 
This means that the second term has the form of a direct correlation between a pair of 
spins at I + r and - r (i.e. a distance r from the free surface, but on the other side). This 
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form of a direct term minus an image term occurs for other correlations near a free 
surface (Bray and Moore 1977). The exponent for the decay of the energy density- 
energy density correlation function is 2 for r < l  and 3 for r > 1 .  This change in the 
critical exponent can be related to the change in critical behaviour of the energy 
density as the surface is approached. The bulk energy density has a t In t ( t  = IT - T,I) 
singularity; however, it is shown in 0 4 that the surface energy density has a t 2  In t 
singularity. Scaling would then predict a change in exponent from 2 to 3 as found 
explicitly. 

In 0 4 the correlation between a surface and bulk spin is found for T I  T,. In both 
cases the Ornstein-Zernike form is found. This contrasts with the bulk case when 
only for T > T, is the Ornstein-Zernike form found there being an anomalous r2 term 
in the denominator of the correlation function for low temperatures. Also in 04, 
consideration is given to surface correlations when the coupling between surface spins 
is different from those in the bulk. 

2. Model 

A cylindrical Ising ferromagnet with M columns (it4 is even) and N rows is 
considered. At each lattice site i, j there is a spin gij = k 1 interacting with its nearest 
neighbours only. The energy of any configuration is taken as 

Wl(ul) and WN(uN) are statistical weights assigned to configurations of the first and 
last rows respectively. It is well known (Camp and Fisher 1972, Schultz et a1 1964) 
that (2.2) can be expressed as the expectation of an abstract operator as follows: 

Z =(wlI(v2v,)N-1V21WN), 

with 

V2 = (sinh 2K)M'2 exp( -K 2 o;u;+~ , ) 
VI =exp( -K* U;), 

(2.3) 

and 

K = J &  p = (kT)-', exp( - 2K*)  = tanh K. 
U?' are Pauli spin matrices, and ( W1l and 1 WN) are kets representing the boundary 
conditions that are imposed. Similarly, if A and B are functions of spins in the i and 
i + r rows respectively, then the expectation of A B  can be written as 

Z-'( Wil(V2Vi)iA(VzV1)rB(V;?V1)N-(r+ii1) V2l WN) (2.3) 
where A and B are suitable operator representations of A and B. Typically A and B 
are single spins. The generalisation of (2.3) to the expectation of the product of any 
number of operators is obvious. The diagonalisation of the symmetrised product 
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V’ = V:’2V2V:’2 essentially calculated the partition function. This was first done by 
Onsager (1944) and the details are contained in many places (Schultz et a1 1964, 
Abraham 1972); the result is: 

V‘ = $[ l+  ( -  l)“] v ’ ( p ) + $ [ l - (  - l)“] V’(a )  (2.4) 

V’(w)=(2 ~ i n h 2 K ) ~ / *  exp( -E w ~(u)(G:G,-$)). (2.5) 

The Onsager function ?(U) is defined by 

cosh y(w)=cosh 2K* cosh 2K -COS U. 

G: and G,,, are derived from the following transformations: 

G: = cos QZ:  - i sin QZ-, 

j-1 

p = l  
f l  = n exp[+iv(l +(T;)]$((+; +icy). 

cy and p in (2.4) are generated by the following conditions: 
eiMa - -1 eiMp = - 1, 

(- 1)“ is the parity operator and Q,, the transformation angle in the Bogoliubov- 
Valatin transformation, is defined by: 

(2.9) 

with 

2 = eiw A = exp 2(K +K*)  B = exp 2(K -K*).  (2.10) 

The appropriate branch of the square root in (2.9) is determined by the conditions: 

(2.11) 

The vacuum state of V’ is defined to be id+) for T > T, and I4+>, I&-) for T 4 T,. 

3. Calculation of (ur+l,lur,l) 

The energy density may be expressed as the expectation of the product of a pair of 
neighbouring spins. The bulk value of the energy density was one of the first cor- 
relation functions to be calculated for the two-dimensional Ising ferromagnet (Kauf- 
man and Onsager 1949, Montrol et a1 1962). Here the energy density is investigated 
as a function of distance from the free boundary spins. The asymptotic approach of 
the energy density to its bulk value is found in the three temperature regions T > T,, 
T < T, and T = T,. All results have the scaling form and in the regions T < T, and 
T > T, the approach to the bulk value is governed by a single exponential term and 
not by a decreasing sequence of exponentials. 
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Firstly, a boundary state is found on which all other states have equal projections. 
This state then represents a free boundary. The appropriate state to choose is the uf 
vacuum state 2-‘IO). From (2.2) the partition function is 

After making a spectral decomposition using the even spectrum of V’ this becomes: 

2M N Z = 2- A + n cos Qs + O(e-NY‘o)), 
6>0 

(3.2) 
A, = (sinh 2K)M’2 exp a y @ ) .  

B 

Using (2.3) and the periodicity of the system, the following is found: 

eMK* M 
(ur,lur+l,l)=COSh 2K*+-sinh 2K* 1 (01VfN-‘~fVf‘/O). (3.3) ZM j = l  

The matrix element in (3.3) is calculated by the method of Schultz et ul (1964) and the 
result is found to be in the limit N + 03, M + 03, 

6: is defined in Onsager (1944) and is related to Q, by 6: = 2Qw. The first two terms 
of (3.4) give the bulk value of the energy density. This is evaluated in Kaufman and 
Onsager (1949). The third term of (3.4) gives the deviation from the bulk value and 
will be evaluated by steepest descent. Using some results from Onsager (1944) the 
last term of (3.4) can be written 

D(T)=sinh 2K* 

Y ( s )  -,dinh x -cosh 2K sinh 2K*-cosh 2K* sinh 2K(d -cosh x )  
[ 1 - (d -cosh x ) ~ ] ~ ’ ~  

with d = cosh 2K cosh 2K*. (3.5) will be evaluated for T 5 T, and T = T,. For 
T I  T, the integral is dominated by its value near y(0)  and the leading behaviour of 
the integral is found by expanding the integrand about this point and using steepest 
descent. Thus for ry(0)  > 1 : 

e-2Y(o) sinh y(0)  
D(T<T,)-  -F( x ) sinh2K*(l+O(:)) 

cosh y(0)-cosh 2K* sinh 2K sinh ~ ( 0 ) + ~  
(3.6) 

( 2 ~  sinh ~ ( 0 ) ) ” ~  
D ( T >  Tc)-  -- 

At T,, y ( 0 )  = 0 and there is a removable singularity at x = 0. However, the infegrul is 
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still dominated by the behaviour of the integrand for small x. The following is found for 
r >  1: 

1 sinh 2K" 
r 2 x  

D(T,)= --( (3.7) 

The summation of (3.7) over r is divergent. This is to be expected in view of the 
logarithmic infinity in the surface entropy at T = T,. It is perhaps worth noting that 
(3.7) would not be reproduced if the energy density was to be calculated at a distance r 
from some point defect in the bulk. In this case the departure from the bulk value 
would behave like the energy density-energy density correlation function for the bulk 
system. 

3.1. Calculation Of (U, 1 U r +  1, 1 f f r  + I + 1.1  u r +  1 + 2 , i )  

From considering the energy density as a function of distance from the free boundary, 
consideration is now given to the energy density-energy density correlation function. 
This may be expressed as the expectation of the product of four spins consisting of two 
pairs of nearest neighbours. This correlation function will be investigated at the 
critical temperature only. 

Associated with any correlation function is an exponent x such that at the critical 
temperature this correlation function decays as r - x ,  with r being the separation 
between the spins. For correlations between spins near a free boundary x will depend 
on the distance from the free boundary. Some effort has recently been given to the 
problem of extracting the dependence of x on the distance from the boundary (Bray 
and Moore 1977). For the energy density-energy density correlation function the 
dependence of x on distance from the free boundary can be readily found, and this 
will now be done. 

Consider two pairs of nearest-neighbour spins lying in the same column; one pair a 
distance r from the surface, the other a distance r + 1. Define: 

C ( L  r )  = ( ~ r , l c r r + l , l f f r + ~ + l , l c r r + ' + 2 . 1 )  - ( u r , ~ u r + l , l ) ( c r r + I + l , l U r + ~ + ~ , l ) .  (3.8) 
Using (2.4) and making a spectral decomposition, with the aid of the even spectrum of 
V', the following is found: 

with 

6; =cosh 2K*+uf  sinh 2K*. 

In the limit N + CO, e-(N-f-r)Y(o) and both tend to zero and will be ignored. Only 
the first term of (3.9) needs to be calculated, the other terms having already been 
found. The transfer matrices are eliminated from (3.1) using the following substitu- 
tion for cr; : 

u1 r L  =- C ei('1-'2)(-i sin Qp2 cos QB1G&GCp2 +cos Qp, COS Qp2G;,Gp2 
M PlS2 

+ i  sin Qal cos QB2G-B1Gs2+sin Qp, sin Qs2G-p1G?P2)- 1. 

Using this in (3.9) only leaves fourth- and second-order matrix elements of the form 
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(4+IGB,GB2GB3GB410) and (4+IGB,GB210) respectively and these are readily calculated 
using (2.7). Finally, for T = T, the following is found: 

lim C(I ,  r > = x  J J e-’(x1+xZ) 
2 v ( w )  v ( s )  

N - a ,  r o  0 
M-CQ 

cosh& cosh x2(1 -cosh 2K tanhixl)(l+cosh 2K tanh x 2 )  
X 

(3 -cosh X1)”2(3 - cosh ~ 2 ) ~ ’ ~  -A( J ~ “ ~ )  e-(1+2r)x cosh ix ( l  -cosh 2K tanh i x )  

+e IT(*) lv(w) e-,xl e-(l+2r)x,cosh 2K tanh h l ( l  -cosh 2K tanh 4x2) 

T (3 -cosh x ) ~ ”  

f l o  (3 -cosh -cosh ~ 2 ) ~ ’ ~  

(3.10) 

The last term of (3.10) is an order of magnitude smaller than the first two terms. For 
1 >> 1 it is seen that each integral is dominated by the value of the integrand near the 
origin. Hence the large-1 behaviour of the integral can be found by expanding the 
integrand to smallest value in x and integrating. The following is found: 

(3.11) 

To leading order in 1 this correlation function has the form of a direct correlation plus 
an image correlation. The first term is just the bulk value of the energy density- 
energy density correlation function (Niemeijer 1967). In the two limits r < 1 and r > 1 
C(1, r) becomes: 

r > I ,  

r < 1. 
C(1, r )  = (3.12) 

(3.12) gives the criteria for the cross-over from bulk to surface behaviour. The two 
forms given in (3.12) are consistent with scaling. Firstly, the bulk energy density has a 
t l n t  singularity as the critical temperature is approached. This would lead to a 
predicted 1-2 decay in the bulk energy density-energy density correlation function. 
Later it will be shown that the energy density in the surface has a t 2  In t singularity 
leading to an expected decay rate of r3 in the energy density-energy density cor- 
relation function. 

4. Calculation of(u,,lal,l) 

Correlations between spins in a free boundary of an Ising ferromagnet have been 
investigated by McCoy and Wu (1967) and Abraham (1971) using different 
techniques. Here correlations between a spin in the boundary layer and one in the 
bulk will be investigated at temperatures both greater and less than T,. Correlations 
between surface spins will also be investigated when the coupling between the surface 
spins is allowed to be different from the bulk coupling. 
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Consider the correlation between a spin in the surface and a spin a distance r 
lattice spacings from it and lying in the same column. This from (2.3) is expressible as 

(a,,lal,l) = eK*(Ol v"-'z ~ " a ;  ~o)((o/ v"Io))-' (4.1) 

with 3; =cosh(K*)af - i  sinh(K*)cTY. To evaluate (4.1) a spectral decomposition is 
made in both numerator and denominator using the even spectrum of V' to give: 

(4.2) 
eK*(4+\6; 10) + O(e-(N-r)y(o) ) 

A cos Qp + O(e-N"'o') 

Terms of order e-(N-r)Y'o) and both vanish in the limit N + a ,  and will be 
ignored. (4.2) is investigated for T < T, and T > T,. Firstly the more involved case for 
T < T, is investigated. A spectral decomposition of (4.1) is made using the odd 
spectrum of V'. (4.2) becomes 

+ eK* e ~ r ~ v ~ u ~ ~ t v ~ a z ) ~ ( ~ + ~ ~ ~ G ~ z G ~ ~  ~ ~ - ) ( r $ - ~ G a 1 G u p ~  10) 
U1122 

+ O(~-*V(O)). (4.3) 

The final term of (4.3) is a bound on the sum of higher terms in the spectral 
decomposition. (4+[&; Id-) is the spontaneous magnetisation for the Ising ferro- 
magnet (Yang 1952) its value being 

m* = ( 4 + / 8  Id-) = [ 1 - (sinh 2K)-2]'/8 

Now 
(4.4) 

and let 

m l  is not such a well known quantity. It is in fact the spontaneous magnetisation for 
spins in the boundary. It is evaluated in appendix 1 where it is shown to be: 

cosh 2K -coth 
cosh 2K - 1 m1 = ( 

(4-./G,lGu210) is evaluated using (2 .7)  and the result is found to be: 

M-'l2 cos Q,[i e-iu2(cos Qa2)-'SU1o- i eWiai(cos Q J 1 S a 2 ~  
U >o 

- e-iQ-l(cos Qul)-1Sul-a2 + S,,,,]. 

(4.5) 

Using results contained in Abraham (1972) the matrix element ( ~ + ~ & ~ G u 2 G u l ~ 4 - )  is 
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- A B  sinh K * ( z ~  - z1)[(1- z lA)( l -  z lB)( l -  tzA)(1- Z Z B ) ] - ~ / ~  

with e'"' = zl ,  ela* = z z .  
Using (4.7) and (4.6) in (4.3): 

M-CC 

The saddle point of y(o) is at w = 0 and in the limit r y (0 )  >> 1 the integral is dominated 
by the contribution from small values of w.  Thus the leading behaviour of the integral 
is obtained by expanding the integrand in powers of w and using steepest descent. 
Thus for ry(O)>> 1, 

N+m 

with 

C = (cosh 2K - l h ( 2  
eK* 
?r cosh 2K -coth 2K 

sinh K*(tanh 2K -ee-2K)+cosh K*(cosh 2K -coth 2K)  

+ 21/2[e2K + 2(cosh 2K - coth 2K)]). 

(4.9) has the Ornstein-Zernike form, the correlation length being (2y(O))-' which is 
the same as the bulk correlation length. The correlation for T > T, between a spin in 
the surface and a spin in the bulk will now be calculated. It will be found that this 
correlation function also has the Ornstein-Zernike form. Thus these perpendicular 
surface correlation functions are quite different from the corresponding bulk cor- 
relation functions where only for T > T, is the Ornstein-Zernike form found. 

For T > T, a spectral decomposition is again made of (4.1) and the limit N + CO 

taken. The result is 

lim (cr,lal,l) = 1 e 
-1 

K *  e-r / (w) cos QB) (4+l&?G: 14-)(4-lGar? 10) + O(e-2rv(o)). 
a (20 N+CC 

(4.10) 

The final term of (4.10) is a bound on higher terms in the spectral decomposition. 
From (2.7) the following is found: 

(4-IGa&.f 10) = M-l" eia(cos an) - '  (COS a,). (4.11) 
a > O  

(4+I&.fGa14-) is evaluated by the method of Abraham (1972) the result being 
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Using (4.12) and (4.11) in (4.10) and taking the limit M+co yields: 

(4.13) 

Again the minimum value of ?(a) is for a = 0 and thus for r y ( 0 )  >> 1 the integral is 
dominated by the small-a behaviour of the integrand. Hence the leading behaviour of 
the integral can be found by expanding the integrand to smallest powers in a. Hence 
for r y ( 0 )  >> 1 the following is found: 

(4.14) 

K M  cosh K*(e-2K - tanh K)’+ sinh K*(e-2K - coth K)’ 
(e--ZK -tanh K)(e-2K -coth K )  C I =  (4+l&) e 

Thus the Ornstein-Zernike form has again ensued. If both spins had been allowed to 
be an arbitrary distance from the surface then for T >  T, (4.14) would not have 
ensued. The correlation function would have been the difference between a ‘direct 
correlation’ and ‘image correlation’ (Camp and Fisher 1972). This would change the 
exponent in the denominator from 4 to 3. The problem of correlations between spins 
in the surface has been examined by McCoy and Wu (1967) and Abraham (1971). 
Using the formalism developed so far it is an easy matter to extend the discussion to 
surface correlation. It is also possible to extend the discussion to the case where the 
couplings between the surface spins is altered from J to J - .  This case was not 
discussed above. 

Equation (2.3) is quite general and holds even if the couplings between spins are 
not all the same. Thus the spin-spin correlation between spins in the boundary row 
when the coupling between the surface spins is altered from J to J -  can be expressed 
as 

(4.15) 

Using the ordinary properties of transfer matrices (4.15) becomes in the limit N + 00, 

M + a  

cosh 2R +sinh 212; cos w -cot Q,,, eZK* sin w sinh 212; 
e 

(4.16) e iw(P- l )  tanQ, ZK *(cosh 2R -sinh 2R cos U ) -  tan Q, sin w sinh 2R‘ 

For the case of J = J- this becomes equal to 

(4.17) 

which, though derived by different methods, has been investigated by McCoy and Wu 
(1967) and an equivalent integral has been investigated by Abraham (1971). Here 
(4.16) will be investigated at all temperatures. Define C ( T )  to be (4.16) and denote 
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the integrand of (4.16) by eiw(P-l)P(w, T). The singularities of P(w, T )  which will be 
of importance in evaluation of (4.16) are outlined below. 

For 0 < T < T, there is a pole at w = 0 and branch singularities at w = f i In B, 
w =  + i l n A ,  A > B > l .  
For T = T, there is no pole on the axis and there are branch singularities at 
w = * i lnA.  
For T>T,  there is again no pole term and there are branch points at 
w = *ln B, w = *i  In A,  A > 1 > B. 
For T = 0 the branch singularities disappear but extra poles may appear on 
the axis of integration. 

In all cases the integrals will be evaluated in the limit of large P. Consider 0 < T < T,, 
then (4.16) becomes 

P(w,  0 < T < TJ. (4.18) 
C ( T <  Tc)=e2(K-K*) + 2  sinh 

The first term is just the square of the spontaneous magnetisation in a boundary row 
with perturbed bonds. For a discussion of the spontaneous magnetisation in a boun- 
dary row with perturbed bonds see Au-Yang (1973). The second term is the integral 
round the branch cut from w = i In B to w = i In A. In the limit P In B > 1 this integral 
is dominated by the contribution from w = i In B and hence in the limit P In B > 1 the 
following is found: 

sinh' 2(K -K*)  eZK*+ coth2 2K -cosh2 2(K - K * )  e-2(K-K*)(P-1) 
{e2K*[coth 2R -cosh 2(K -K*)] +sinh 2(K -K*)}2 

X 
(P- lp12 

x (1 +O(l/P)). (4.19) 

[2(K -K*)]-' is the bulk correlation length, at T = T,, K -K* = 0. At the critical 
temperature the analytic properties of P(w,  T,) change; however it  is still possible to 
Taylor expand P(w,  T,) about w = 0 and the following is obtained in the limit P > 1: 

+0(l/P2)].  (4.20) 4R-2K* C(T,) = -[e P -1  

For'T,< T the following is obtained: 
e2(K*-K) 4K* (e -1) 

'("< T)= (2?r(eJX - 1) sinh 2(K*-K) 

sinh2 2(K* -K)+coth2 2K -cosh2 2(K* -K) e-2(K*-Kxp-1) + 
e2K*[coth 212; -cosh 2(K* - K ) ]  + sinh 2(K* - K )  (P  - 1)3'2 

x (1 +O(l/P)). (4.21) 
(4.21), (4.20) and (4.19) reduce to the results of McCoy and Wu (1967) for the case 
J = J-. For T = 0 (4.16) can be evaluated exactly to give: 
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For K positive and 4K + 2K > 0: 

C(O)= 1. 

C(0) = (-  1y-l 

For 4 K + 2 K  < O :  

F o r 4 R + 2 K = O :  

For K > 0 and 4 R  + 2K = 0 correlations in the surface behave like those in a one- 
dimensional Ising antiferromagnet in a magnetic field of magnitude equal to twice the 
coupling constant. For this special case only there will also be entropy associated with 
the surface. Equation (4.17) can be used to examine the energy density in the surface 
layer. This will now be done and the critical behaviour of the surface energy density 
will be found. The bulk energy density has a t In r singularity; however, the surface 
energy density has a t'lnt singularity. This change in critical behaviour can be 
associated with the change in the decay rate of the energy density-energy density 
correlation function as explained in 0 3. For neighbouring spins (4.17) becomes 

e2K* T 

I r e i '  tan Q~ 

and consider T > T,. The branch points of tan Qp can be seen from (2.9) to be at 
p = * 2i(K* - K )  and p = * 2i(K +K*). Define T = (K* - K )  and choose T such that 
IK*-K\<< 1, and define 

e2K* r r  

~ ( 7 )  = __ I-, eip tan Q ~ .  (4.22) 

The critical behaviour of the above can be found by analytic continuation of C ( T )  into 
the complex T plane. Consider C(e2niT), where the contour of integration of this is 
shown in figure l(b). Now consider 

27r 

& ( T )  = C(e2"'7)- ~ ( 7 )  

then the contour of integration of &(T)  is the Pochhammer contour shown in figure 
l(c). Using (2.9) and (4.22) the following is found: 

which implies: 

C(T) = T~ In T(e2K*+ 0(T2))+Taylor series in T.  

So far only the non-analytic part of C ( T )  has been found and there may be a linear 
term in the Taylor series so that the critical behaviour of C ( T )  is not yet identified. 
Now consider 

c ' ( T )  = C(eiTT)- ~ ( 7 ) .  

This expression will contain contributions from the non-analytic part of C ( T )  and from 
terms linear in 7. The contour of integration for C' (T)  is shown in figure l(d).  
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I; 
1-i In A 

( 0 1  

( c  I ( d )  

Figure 1. Contours of integration for: ( a )  C(T):  ( b )  C(e'"'7); (c) C(T);  ( d )  c'(7). 

However it is easy to show that 

~ ( T ) - ~ c ' ( T ) = o  

so there are no linear terms in C(T). A similar calculation can be made for T < T, and 
it is found that the critical part of the energy density behaves as T' In 171. 

5. Conclusion 

Using simple techniques the energy density and the energy density-energy density 
correlation functions have been calculated near the free surface of an Ising ferro- 
magnet and the results are given in P 2. The correlation between a bulk and a surface 
spin have been calculated in the limit when the separation is greater than the cor- 
relation length. Both above and below T, this correlation function has the Ornstein- 
Zernike form. Asymptotic forms for the surface correlations with perturbed surface 
bonds have been found and the results given in 04. The non-analytic part of the 
surface energy density has been found to be t21nt. This contrasts with a bulk 
singularity of t In t. 
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Appendix 1. 

Consider 
-1 

m l  = lim M-'/2 eK* n cos Q.( n cos QB) . 
M-DCO .>O B>O 

From (2.8) it is seen that 

CY =P+(lr /M)  

therefore 

Only terms of order less than 1/M2 need be retained. Define 
-1 

mo= lim ~ 4 - l ' ~  n sintrr( n sin:@) . 
M-m a > O  P>O 

Then using (A.2) and (A.3) in (A.4) and (A.l)  

lr lr 
In - = lim ~ l n ( l - - Q b t a n Q s  (z:) M-m M 

The summation in (A.5) can be written as an improper integral 

Expanding each logarithm in (A.6) and retaining the first term from each logarithm 
yields 

1 A B - 1  
2 (1-A)(l-B) '  

--In 

Now all other terms coming from the expansion of the logarithms cancel in pairs. 
Hence from (AS)  

- ml = eK*( (1 -A)(1 - B )  
mo A B - 1  

Now mo= 1, so that 

m l = e  
(1-A)( l -B)  ' I 2  C O S ~ ~ K - C O ~ ~ ~ K  "'i A B - 1  ) = (  cosh2K-1 

The above is identical to the spontaneous magnetisation found by McCoy and Wu 
(1967). 
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